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Abstract

A method, which is based on space-averaged quadratic variables and does not assume the restrictive assumptions of the

Statistical Energy Analysis (SEA) such as high overlap or damping conditions, is described. The results are spatially more

detailed than an SEA response, and of a lower computational cost than the one of the usual displacement formulation.

Some of the quadratic variables used, like energy densities or structural intensity, retain a strong energy meaning, even

when time- and space-averaged. Their governing equation is derived for a homogeneous and isotropic medium with

hysteretic damping. The main originality of this work lies in considering complex structural intensity and establishing

appropriate energetic boundary conditions for both active and reactive space-averaged structural intensities by using the

usual boundary conditions for the displacement field and the stress tensor. The numerical examples prove that this space-

averaged quadratic method is well suited to describe global energy transfers along one-dimensional dissipative structures in

a frequency range for which the overlap is too low to obtain a quadratic response from the SEA and solving the wave

equation by using the Finite Element Method (FEM) would require more elements. Besides, describing junctions with

impedances makes the resonant behaviour of the system still accessible on frequency responses.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration and noise predictive tools are necessary to define noise paths and implement efficient control
strategies, for example in the automotive and aerospace industries. Unfortunately, it is difficult to predict the
vibration behaviour of structures consisting of numerous connected elements correctly throughout the entire
audible frequency range by a single predictive tool.

In a low-frequency range, the wave equation is usually solved by the Finite Element Method (FEM) and the
Boundary Element Method (BEM). But the wavelength of the system deformation becomes shorter as the
frequency increases and solving the wave equation by FEM or BEM would require the use of an excessive
number of degrees of freedom. Furthermore, the sensitivity of the system to manufacturing imperfections
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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means that the FEM results for an ‘‘ideal’’ system may be very different from the behaviour of the
manufactured product [1–3].

The analysis of mid- to high-frequency vibrations of structures has been an area of intense research for the
past decades. Statistical Energy Analysis (SEA) [4] can provide an averaged space and frequency
determination of a quadratic vibro-acoustical response ‘‘in the statistical sense’’ for the dynamic problem
at high frequencies for complex built-up systems, assuming that the subsystems are weakly coupled [5]. But
SEA is surely not appropriate to study the longitudinal waves in a broad frequency range in a wave guide, at
least if one does not assume that the damping is so high to permit the system to have a high overlap.

This study deals with the application of energy methods for modelling structural dynamics and known as
the vibrational conductivity analogy. This work is an extension of those energy methods as it accounts for
both active and reactive parts of energy fields.

The oldest technique is the application of geometrical optics in engineering mechanics [6], and for which the
energy density of a highly oscillating wave field is the solution of a transport equation. In the limit of a small
transport mean free path, transport equations can be approached by diffusion equations. This is the
approximation used by Rybak [7,8] for elastic waves which constitutes the basis of the vibrational conductivity
analogy. A diffusion equation of the heat conduction type for the total energy density of a vibrating system
can also be derived assuming that the high-frequency acoustic energy flow or the structural intensity is
proportional to the gradient of energy density [9]. Further investigations of the energy model of rods and
beams [10,11], membranes [12] and plates [13–15] were conducted.

Although this model was applied with success to one-dimensional structures [16], its justification is more
difficult and its validity is not satisfying for multidimensional problems. In a semi-infinite case, the solutions
are inconsistent with the exact power flow results [17]. Moreover, the thermal analogy is not correct for two-
dimensional systems [18]; in particular, for a load point the far field solution of the diffusion equation is
proportional to 1=

ffiffi
r
p

while the exact solution is proportional to 1=r. This statement shows that the thermal
analogy can be applicable only to reverberant systems in which many reflections enable the interferences
between various waves to be neglected.

The purpose of this paper is to present a method for describing power transfers along a one-dimensional
dissipative structure in a frequency range for which solving the wave equation by using FEM would require a
higher level of discretization and SEA cannot apply because of too many restrictive assumptions (high overlap,
damping conditions). The approach consists in deriving averaged energy quantities to simplify their spatial
description by removing useless details. The method uses a differential equation for the complex amplitude of
the structural intensity, which remains valid in the case of high dissipative medium. In case of slight damping,
some simplifications lead to results which are similar to the high-frequency equation of the vibrational
conductivity analogy. One of the originalities of this work lies in considering complex structural intensity, which
is generally not the case in the literature. This approach makes it possible to account for the usually ignored
reactive effects, in particular by the methods which neglect the wave interferences. Besides, the method relies on
exact energetic boundary conditions involving useful structural dynamics parameters like impedances and input
powers, which contain displacement information and provide access to the resonances of the system.

The paper is organized as follows: the next section describes concepts like quadratic superposition and
length scales of energy variables, showing how appropriate it is to use space averages to describe power
transfers at a large length scale. In the same section, the link between large-scale components of energy
variables and their space-averaged values is established for any damping value. Then exact and general
boundary conditions for both active and reactive space-averaged structural intensities are obtained from the
displacement formulation in Section 3, either for passive or active junctions. Finally, numerical examples are
given in Section 4.

2. Space-averaged quadratic variables

2.1. General form of the displacement field and energy quantities

The systems considered in this work are one-dimensional systems in which only longitudinal waves
propagate. Such systems can be qualified by only a complex elastic parameter lþ 2m, but the method
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presented here is also applicable to other types of plane waves like quasi-longitudinal ones or shear horizontal
ones in semi-infinite plates, or to acoustics by using the speed of sound c to link the wavenumber k to the
angular frequency o: k ¼ o=c. Only general and non-restrictive assumptions are put forward:
�

Ta

Co

Str

Kin

Str

To

La
small displacement and small strain,

�
 homogeneous and isotropic medium with hysteretic damping (density r, damping factor Z, complex Lamé

coefficients l ¼ l0ð1þ jZÞ and m ¼ m0ð1þ jZÞ),

�
 steady-state harmonic waves of angular frequency o ¼ 2pf ,

�
 system with large dimensions compared to the wavelength l0.
The displacement vector u derives from the scalar potential f. Outside exciting sources the scalar potential f
and the displacement u ¼ gradf satisfy the scalar and the vectorial Helmholtz equation, respectively, ðDþ
k2
Þf ¼ 0 and ðDþ k2

Þu ¼ 0, where the wavenumber is k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2=ðlþ 2mÞ

p
. Hence, the complex amplitude u

of the displacement field between two junctions is written as

uðxÞ ¼ Ae�jkx þ Bejkx, (1)

where A and B are the complex amplitudes, respectively, of the forwards and the backward-propagating wave.

Writing the wavenumber k ¼ k0ð1� jyÞ leads to k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro2Z2=ð2ðl0 þ 2m0Þð1þ Z2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
� 1ÞÞ

q
and

y ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Z2

p
� 1Þ=Z. Among the quadratic variables are the kinetic energy density T, the strain energy

density U, the total energy density W ¼ T þU , the Lagrangian energy density L ¼ T �U and the structural
intensity I. Considering time-averaged quadratic variables and omitting the real part symbol, the amplitudes
of T, U, W, L and I are obtained from the displacement field, which is detailed in Table 1, where � denotes the
conjugate number and ;x the spatial derivative.

For example the complex strain energy density U can be written as

UðxÞ ¼
lþ 2m

4
kk�

AA�e�jðk�k�Þx þ BB�ejðk�k�Þx

þA�Be�jðkþk�Þx þ AB�ejðkþk�Þx

 !
. (2)

Its real part ReðUÞ is the ‘‘stocked’’ energy density whereas its imaginary part ImðUÞ is proportional to the
‘‘dissipated’’ power. The kinetic energy density T is an exception as it is the only purely real quadratic quantity
among those presented in Table 1. Time averages of quadratic variables are governed by two wavenumbers:
k þ k� and k � k�. These two wavenumbers match with two different scales of variation (Fig. 1): (i) the real
wavenumber k þ k� arises from interferences between propagative waves and characterizes stationary
components of quadratic variables at the scale of the half-wavelength l0=2 ¼ 2p=ðk þ k�Þ and (ii) the
imaginary wavenumber k � k� characterizes the evanescence, due to the dissipation, of the large-scale
components of quadratic variables, that is to say quadratic components built from plane waves when taken
separately, like the first two terms of the expanded form (2) with amplitudes AA� and BB�. Hence, k � k� is
the wavenumber that describes power transfers on a large scale compared to the wavelength.

Identifying the extreme values of energy densities, which are due to the positions of nodes and antinodes, is
not useful in the frequency range this paper focuses on. Only components that describe power transfers on a
large scale compared to the wavelength by giving the average level of energy quantities must be retained.
ble 1

mplex amplitudes of energy variables

uctural intensity I ¼ joðlþ 2mÞu;xu�=2
etic energy density T ¼ ro2uu�=4
ain energy density U ¼ ðlþ 2mÞu;xu�;x=4

tal energy density W ¼ T þU

grangian density L ¼ T �U
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Fig. 1. One-dimensional longitudinal counter-propagative waves out from exciting sources in a steel medium (medium 1 in Table 6 except

damping factor Z ¼ 0:08) at 2000Hz: (a) real part of the displacement u; (b) kinetic energy density T.
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2.2. Space-averaged variables and large-scale components for one-dimensional plane waves

At the scale of the half-wavelength l0=2 ¼ 2p=ðk þ k�Þ, the space average of any quadratic variable hQi is
defined as follows:

hQiðxÞ ¼
2

l0

Z xþl0=4

x�l0=4
QðuÞdu, (3)

where l0=2 is also the scale of variation of small-scale components of Q (Fig. 1).
Large-scale components of quadratic variables, with wavenumber k � k� appearing in Eq. (2), are linked to

their half-wavelength-scale space-averaged values defined by Eq. (3). This link is general but can be illustrated
for the complex strain energy density U considering a case without any load where the complex amplitude u of
the displacement field is given by Eq. (1) and U by Eq. (2). Using the definition (3) of the average, the space-
averaged strain energy density hUi can be written as

hUiðxÞ ¼
lþ 2m

4
kk�ðAA�e�jðk�k�Þx þ BB�ejðk�k�ÞxÞf ðyÞ. (4)

The factor ðlþ 2mÞkk�ðAA�e�jðk�k�Þx þ BB�ejðk�k�ÞxÞ=4 stands for the strain energy density obtained when
interferences between the two waves considered are neglected. For plane waves, neglecting interferences terms
is equivalent to retaining nothing but the large-scale components of quadratic variables. Here this is obtained
applying an averaging process.

The averaging process introduces the last factor of Eq. (4):

f ðyÞ ¼
sinhðpyÞ

py
. (5)

This factor depends on only the dissipative properties of the medium, and takes the form f ðyÞ ¼ 1þOðZ2Þ for
slight damping.
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The same process can be used to average the kinetic energy density: the space-averaged value hTi is
proportional, with the factor f ðyÞ, to the large-scale components of T:

hTiðxÞ ¼
ro2

4
ðAA�e�jðk�k�Þx þ BB�ejðk�k�ÞxÞf ðyÞ. (6)

Using k2
¼ ro2=ðlþ 2mÞ, the space-averaged strain energy density hUi is found to be proportional to the

space-averaged kinetic energy density hTi:

hUi ¼
1þ jy
1� jy

hTi. (7)

Therefore, the result is similar for the space-averaged total energy density hW i ¼ hTi þ hUi, the space-
averaged Lagrangian density hLi ¼ hTi � hUi and also for the space-averaged structural intensity whose
complex amplitude hIi can be written as

hIiðxÞ ¼
lþ 2m

2
okðAA�e�jðk�k�Þx � BB�ejðk�k�ÞxÞf ðyÞ. (8)

2.3. Differential equation for the space-averaged structural intensity

Only the propagation of large-scale components of quadratic variables is considered here. It is clear from
Eq. (8) that the complex space-averaged structural intensity hIi satisfies the following differential equation
between junctions:

DhIi þ ðk � k�Þ2hIi ¼ 0. (9)

Space-averaged energy densities hTi, hUi, hW i and hLi also satisfy this differential equation. Since the
wavenumber k � k� is purely imaginary, the space-averaged structural intensity hIi is the evanescent solution
of a propagation equation. Moreover, Eq. (9) can be written again as

DhIi � 4ðImðkÞÞ2hIi ¼ 0, (10)

which is the same as the equation controlling the space-averaged far field displacement autospectrum for
bending waves in Ref. [19] where the space average interval is a multiple of quarters of wavelengths. In the case
of a slight damping, Eq. (9) can be written as

DhIi �
Z2o2

c2g
hIi ¼ 0, (11)

where the wave celerity cg defined as c2g ¼ o2=k2 is in the form c2g ¼ ðl0 þ 2m0Þ=r when Z51. This form (11) is the
basic equation (here outside exciting sources) previously derived in many works, but only for the real part of the
structural intensity, as explained in Section 1. As it has been shown in Ref. [20] that this equation can be derived
from energy equations first presented in Ref. [21] if interferences between plane waves are neglected and/or
appropriate space averages are performed, the method used to obtain Eq. (9) is not new. However, since no slight
damping assumption has been put forward, Eq. (9) is available for any value of the damping loss factor Z.

2.4. Space-averaged energy densities

Here the choice has been made to work with the space-averaged structural intensity hIi and other space-
averaged quadratic variables hTi, hUi, hW i and hLi can be set off against hIi. Similar to acoustics [22], the
structural intensity and energy densities (Table 1) are linked by

I ;x ¼ �2joðT �UÞ þ P, (12)

where the input power density P is linked to the external load amplitude f x by

P ¼ �
jo
2

f xu�. (13)
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Averaging Eq. (12) and using the ratio between the space-averaged kinetic energy density hTi and the space-
averaged strain energy density hUi from Eq. (7) leads to either hTi or hUi. Since the next section of this work
will start dealing with a concentrated load at x ¼ a, in such a case hTi can be written as

hTi ¼ �
1� jy
4oy

� �
ðhIi;x � PdaÞ, (14)

where da is the Dirac function at x ¼ a. Outside exciting sources, the space-averaged kinetic energy density hTi
is proportional to the spatial derivative hIi;x of the space-averaged structural intensity. Other averaged energy
densities hUi (7), hW i and hLi are derived from hTi.
3. Boundary conditions

Space-averaged quadratic quantities, first hIi and then hTi, hUi, hW i and hLi, are obtained by solving the
local equation (9) with appropriate boundary conditions for either passive or active junctions and which are
presented in this section.
3.1. Active junctions

Considering a concentrated load f x at x ¼ a, the displacement potential f satisfies

ðDþ k2
ÞfðxÞ ¼ �

k2f x

ro2
Hðx� aÞ, (15)

where HðxÞ is the Heaviside function.
Hence, the displacement potential f can be written as

fðxÞ ¼ C1 cosðkxÞ þ C2 sinðkxÞ þ
f x

ro2
Hðx� aÞðcosðkðx� aÞÞ � 1Þ. (16)

At x ¼ a where the concentrated load is f x, hIi and hIi;x are discontinuous. The input power density P (13)
is an appropriate parameter expected to appear in boundary conditions for active junctions. The two-
mentioned conditions concern the left limit value hIiða�Þ and the right limit value hIiðaþÞ: the active junction
will be qualified by hIiðaþÞ � hIiða�Þ and hIiðaþÞ=hIiða�Þ. These two numbers are computed from the complex
amplitude of the displacement u, whose potential f satisfies the motion equation (15) and can be written in the
form (16). The complex amplitude of the displacement u is given by the derivation of the potential f. In the
same manner the complex amplitude of the spatial derivative of the displacement is given by the derivation of
u. The complex amplitude of the structural intensity I is obtained from the displacement field (see Table 1).

The expanded complex amplitude of I contains the two kinds of components (wavenumbers �ðk þ k�Þ and
�ðk � k�Þ presented in Section 2.1) of the structural intensity. Since the space-averaged structural intensity hIi
is proportional to the large-scale components (wavenumbers �ðk � k�Þ) of the structural intensity, hIi can be
extracted from I.

Terms which are factors of the Heaviside function Hðx� aÞ in the expression of hIi give the jump of the
amplitude of the space-averaged structural intensity at x ¼ a:

hIiðaþÞ � hIiða�Þ ¼ f ðyÞ
jo
4

ðlþ 2mÞk2

ro2

k�

k
f �x �C1k sinðkaÞ þ C2k cosðkaÞð Þ

þf x C�1k� sinðk�aÞ � C�2k� cosðk�aÞ
� �

0
B@

1
CA. (17)

Expression (17) contains the complex amplitude of the displacement at x ¼ a and can be written again as

hIiðaþÞ � hIiða�Þ ¼
f ðyÞ
2
�
jo
2

f xu�ðaÞ þ
k�

k

jo
2

f �xuðaÞ

� �
, (18)
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or, using definition (13) of the input power density P:

hIiðaþÞ � hIiða�Þ ¼
P

2
1þ

k�

k

P�

P

� �
f ðyÞ, (19)

which is the first boundary condition qualifying the active junction. This last expression (19) is more
complicated than the single input power density P which gives the discontinuity of the local structural
intensity: IðaþÞ � Iða�Þ ¼ P. In particular it involves the loss factor y which is present in f ðyÞ due to the space
average and in k�=k ¼ ð1þ jyÞ=ð1� jyÞ.

The second boundary condition deals with the ratio hIiðaþÞ=hIiða�Þ. This ratio can be written as

hIiðaþÞ

hIiða�Þ
¼ 1þ

hIiðaþÞ � hIiða�Þ

hIiða�Þ
. (20)

The left limit value of the space-averaged structural intensity hIiða�Þ can be computed from the expression

of hIi. With ðlþ 2mÞ=ðl� þ 2m�Þ ¼ k�
2
=k2, it can be written as

hIiða�Þ ¼
f ðyÞ
2

Iða�Þ þ
k�

k
I�ða�Þ

� �
. (21)

At x ¼ �L1 the impedance Z1 is defined as Z1 ¼ ðlþ 2mÞu;xð�L1Þ=ðjouð�L1ÞÞ and is linked to the specific
impedance z1 by Z1 ¼ rc z1. At x0 ¼ a� the impedance Za� can be computed by using z1, as presented in the
appendix. On the left side of the load point a, the normal derivative q=qn is q=qn ¼ �q=qx and the impedance
Za� can be written as

Za� ¼ rc
ejkðL1þaÞ � e�jkðL1þaÞ þ z1ðe

jkðL1þaÞ þ e�jkðL1þaÞÞ

z1ðejkðL1þaÞ � e�jkðL1þaÞÞ � ejkðL1þaÞ � e�jkðL1þaÞ
. (22)

Hence, the left limit value of the structural intensity Iða�Þ can be written as

Iða�Þ ¼
jo2

2
Za�uðaÞu�ðaÞ, (23)

which, accounting for the input power density P (13), can be written as follows:

Iða�Þ ¼ 2jZa�
PP�

f xf �x
. (24)

Using Eqs. (20), (21) and (24), the second boundary condition at x ¼ a deals with the ratio hIiðaþÞ=hIiða�Þ and
finally can be written as

hIiðaþÞ

hIiða�Þ
¼ 1þ

P 1þ k�P�

kP

� �
2j PP�

f xf �x
Za� �

k�Z�a�

k

� � . (25)

3.2. Passive junctions

3.2.1. Impedance condition

The impedance condition of the complex amplitude of the displacement u is

u;nðLÞ þ jkzuðLÞ ¼ 0, (26)

where ;n is the normal derivative and z is the specific impedance at x ¼ L: z ¼ z1 when L ¼ �L1 and z ¼ z2
when L ¼ L2. Between junctions, when �L1pxoa or aoxpL2, the complex amplitude u satisfies the
Helmholtz equation and is written in the form (1).

Using Eq. (26) the link between the two constants A and B of the displacement (1) can be found:

A ¼
�þ z

�� z
e2jkLB, (27)
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where the parameter � ¼ �1 is defined by

q
qn
¼ �

q
qx

. (28)

Writing the amplitude of the space-averaged structural intensity hIi (9) and its spatial derivative hIi;x at
x ¼ L gives

hIi;xðLÞ � jðk � k�Þ
1þ a
1� a

hIiðLÞ ¼ 0, (29)

where

a ¼
ð�þ zÞð�þ z�Þ

ð�� zÞð�� z�Þ
. (30)

Using definition (28) of �, Eq. (29) leads to the following mixed boundary condition for the complex amplitude
of the space-averaged structural intensity:

hIi;nðLÞ þ jðk � k�Þ
1þ zz�

zþ z�
hIiðLÞ ¼ 0. (31)

Particular cases of mixed boundary conditions with real specific impedances are presented in Table 2.

3.2.2. Discontinuity of the material density

3.2.2.1. Configuration and definition of impedances. Boundary conditions for a discontinuity of the material
density at x ¼ d (Fig. 2) are explained in this section. Impedances and specific impedances involved in the
computation of these boundary conditions are presented in Tables 3–5.

Using equations in Tables 3 and 4 that link concentrated loads f x1
and f x2

to strain discontinuities at x ¼ a

and b, the three specific impedances za� , za and zaþ and the three specific impedances zb� , zb and zbþ are,
respectively linked by zaþ þ za� ¼ za and zbþ þ zb� ¼ zb.

3.2.2.2. Boundary conditions for the displacement field. The displacement and the normal stress are
continuous at the boundary x ¼ d between the two media:

uðd�Þ ¼ uðdþÞ;

ðl1 þ 2m1Þu;xðd
�
Þ ¼ ðl2 þ 2m2Þu;xðd

þ
Þ:

(
(32)

3.2.2.3. Specific impedances on each side of the boundary. Both specific impedances zd� and zdþ can be
computed from other specific impedances, respectively, zaþ and zb� , by using formula (49) of the appendix:

zd� ¼
ð1� zaþÞe

�jk1ðd�aÞ � ð1þ zaþÞe
jk1ðd�aÞ

ð1� zaþÞe
�jk1ðd�aÞ þ ð1þ zaþÞe

jk1ðd�aÞ
(33)

and

zdþ ¼ �
ð�1� zb�Þe

�jk2ðd�bÞ � ð�1þ zb�Þe
jk2ðd�bÞ

ð�1� zb�Þe�jk2ðd�bÞ þ ð�1þ zb�Þejk2ðd�bÞ
. (34)
Table 2

Particular cases of mixed boundary conditions with real specific impedances

Free end Clamped end Anechoic end

Specific impedance z ¼ 0 jzj ! þ1 z ¼ 1

Displacement u;nðLÞ ¼ 0 uðLÞ ¼ 0 u;nðLÞ þ jkuðLÞ ¼ 0

Space-averaged structural intensity hIiðLÞ ¼ 0 hIiðLÞ ¼ 0 hIi;nðLÞ þ jðk � k�ÞhIiðLÞ ¼ 0
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Fig. 2. Configuration of the studied system in Section 4.2.

Table 3

Definitions of impedances and specific impedances for the active junction at x ¼ a

x a� a aþ

Impedance
Za� ¼ �

ðl1 þ 2m1Þu;xða
�Þ

jouðaÞ
Za ¼

f x1

jouðaÞ
Zaþ ¼

ðl1 þ 2m1Þu;xða
þÞ

jouðaÞ

Specific impedance
za� ¼

Za�

r1c1
za ¼

Za

r1c1
zaþ ¼

Zaþ

r1c1

Table 4

Definitions of impedances and specific impedances for the active junction at x ¼ b

x b� b bþ

Impedance
Zb� ¼

ðl2 þ 2m2Þu;xðb
�
Þ

jouðbÞ
Zb ¼

f x2

jouðbÞ
Zbþ ¼ �

ðl2 þ 2m2Þu;xðb
þ
Þ

jouðbÞ

Specific impedance
zb� ¼

Zb�

r2c2
zb ¼

Zb

r2c2
zbþ ¼

Zbþ

r2c2

Table 5

Definitions of impedances and specific impedances for the passive junction at x ¼ d

x d� dþ

Specific impedance
zd� ¼

u;xðd
�
Þ

jk1uðd�Þ
zdþ ¼ �

u;xðd
þ
Þ

jk2uðdþÞ

Impedance Zd� ¼ r1c1zd� Zdþ ¼ r2c2zdþ
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Moreover, both specific impedances za� and zbþ can be computed from other specific impedances,
respectively, z1 and z2:

za� ¼ �
ð�1� z1Þe

jk1ðL1þaÞ � ð�1þ z1Þe
�jk1ðL1þaÞ

ð�1� z1Þejk1ðL1þaÞ þ ð�1þ z1Þe�jk1ðL1þaÞ
, (35)

zbþ ¼
ð1� z2Þe

�jk2ðL2�bÞ � ð1þ z2Þe
jk2ðL2�bÞ

ð1� z2Þe�jk2ðL2�bÞ � ð1þ z2Þejk2ðL2�bÞ
. (36)
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As a consequence, knowing specific impedances zd� and zdþ comes down to knowing specific impedances z1
and z2.

3.2.2.4. Boundary conditions for the space-averaged structural intensity. At x ¼ d the space-averaged
structural intensity is continuous. Hence, the first boundary condition is

hIiðdþÞ ¼ hIiðd�Þ. (37)

Since specific impedances zd� and zdþ can be computed from specific impedances z1 and z2, mixed boundary
conditions can be written for space-averaged structural intensities hIiðd�Þ and hIiðdþÞ. These boundary
conditions are the same kind as Eq. (31):

�hIi;xðd
�
Þ þ jðk1 � k�1Þ

1þ zd�z�d�

zd� þ z�d�
hIiðd�Þ ¼ 0, (38)

hIi;xðd
þ
Þ þ jðk2 � k�2Þ

1þ zdþz�
dþ

zdþ þ z�
dþ

hIiðdþÞ ¼ 0. (39)

The second boundary condition is related to the ratio hIi;xðd
þ
Þ=hIi;xðd

�
Þ. This ratio can be obtained from

Eqs. (37)–(39):

hIi;xðd
þ
Þ

hIi;xðd
�
Þ
¼ �

k2 � k�2
k1 � k�1

1þ zdþz�
dþ

1þ zd�z�d�

zd� þ z�d�

zdþ þ z�
dþ

. (40)

4. Application

The approach consists in solving Eq. (9) along the one-dimensional structure, with boundary conditions:
�
 Eqs. (19) and (25) for a concentrated load,

�
 Eq. (31) for a specific impedance z at the end of the system, and

�
 Eqs. (37) and (40) for a discontinuity of material density.
Once the space-averaged structural intensity hIi is obtained, space-averaged energy densities hTi, hUi, hW i
and hLi are derived.

4.1. A first example dealing with active and passive junctions

Computations were carried out for pure longitudinal waves propagating between �L1 ¼ �9m and L2 ¼

11m (Fig. 3) in a steel medium, where parameters are defined in Table 6 (medium 1). The concentrated load f x

is located at a ¼ 3m. The specific impedance z1 ¼ 0:05þ 0:01j indicates that the junction is highly reflecting
and a little dissipative. The specific impedance z2 ¼ 0:9 indicates that the junction is slightly reflecting.

4.1.1. Frequency response for the space-averaged structural intensity

Power transfers can be analysed in the frequency domain. The active structural intensity is computed at
b ¼ 7m for a unitary load f x ¼ 1Pa (Fig. 4). The highest and lowest values are changing over.
fx

x
a−L1 L2

z1
z2

Fig. 3. Configuration of the studied system in Section 4.1.
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Table 6

Properties of media

Medium 1 Medium 2

Density, r ðkgm�3Þ 7800 2700

Young’s modulus, E (Pa) 2:1 1011ð1þ j0:01Þ 0:7 1011ð1þ j0:01Þ
Poisson ratio, n 0.3 0.3

3000 3500 4000 4500 5000
0

2

4

6

8 x 10−9

f (Hz)

R
e 

(<
I>

) (
W

 m
–2

)

Fig. 4. Space-averaged active structural intensity at point b ¼ 7m (bold point of Figs. 5 and 6) for a unitary load f x.
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4.1.2. Spatial description of the power transfers

Exact energy quantities are computed from the displacement field whereas space-averaged energy quantities
are computed using the averaged quadratic model presented in this work. The active structural intensity is
computed at 3640Hz (Fig. 5) for one of its lowest values and at 3750Hz (Fig. 6) for one of its highest values
(bold points of Fig. 4). These different levels are due to the extreme values of the input impedance modulus
jZaj ¼ jZaþ þ Za�j defined in Table 3 (Fig. 7) and computed by using specific impedances z1 and z2. With the
averaged quadratic formulation, the large-scale components of energy quantities are well reconstituted. When
space-averaged, energy quantities like energy densities (14) and (7) become smoother (Fig. 6). A model based
on the displacement with 6 finite element nodes per wavelength would require 76 nodes at 4000Hz whereas
very few nodes are necessary on �L1pxpa and on apxpL2 for the space-averaged quadratic model
presented in this work. This demonstrates the relevance of this averaged energy method as the frequency
increases and many systems like this one (Fig. 3) are connected.

4.2. A second example dealing with a discontinuity of density

Computations were carried out for pure longitudinal waves propagating at a frequency of 4000Hz either in
a steel medium (Table 6) between �L1 ¼ �10m and d ¼ 3m or in an aluminium medium (Table 6) between
d ¼ 3m and L2 ¼ 10m (Fig. 2). A first concentrated load f x1

¼ 1Pa is located at a ¼ �2m and a second one
f x2
¼ 2Pa is located at b ¼ 7m. The specific impedance z1 is z1 ¼ 0:05þ 0:01j as in Section 4.1. The specific

impedance z2 ¼ 0:1 indicates that the junction at x ¼ L2 is highly reflecting. The discontinuity of the material
density at x ¼ d implies a discontinuity of the spatial derivative of both local (computed from the
displacement field) and space-averaged structural intensities. The averaged formulation enables a good
reconstitution of the latter (Fig. 8).
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Fig. 5. Real part of the structural intensities at 3640Hz.
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5. Discussion

For energy variables of one-dimensional plane waves, the local structure of the energy field results in
interferences between the counter-propagative waves. Performing space averages at the scale of the half-
wavelength l0 leads to consideration of nothing but the transfer of large-scale components of quadratic
variables. Although the assumption was not a priori made, this approach is similar to the decorrelation of the
waves, which lends a statistical sense to the method, as performing frequency averages would do [19].

In the particular case of plane waves, this result can be extended to bi-dimensional and three-dimensional
spaces: the interference field between two plane waves with a relative angle a, in the plane defined by both
directions, a spatial pseudo-periodicity characterized by a cell of surface S ¼ l20=ð4j sin a cos ajÞ [23].
Expressions (4), (6) and (8) for averaged energy variables can easily be extended for considering the
combination of wave vectors instead of wavenumbers; relation (7) and the governing equation (9) then
remain valid.

Real acoustic fields resulting from the superposition of exact propagative plane waves are, however, not
common. Even for such an approximated acoustic field, the associated boundary conditions are not obvious,
providing no clear sense to an extension of conditions (25), (31) or (40) for two- or three-dimensional spaces.

The averaging process used above is based on the pseudo-periodicity of the field. This property is no more
satisfied by bending wave fields, because of the contribution of evanescent wave components. Hence, the direct
extension of the presented approach to more complex one-dimensional waveguides, accounting for bending
waves, seems to be difficult as evanescent components must be taken into account when establishing boundary
conditions for energy variables.
6. Conclusion

Because of the wave vector combinations, quadratic variables in plane waves hold two different kinds
of components. In a one-dimensional case, these two kinds of components match with two very different
scale lengths: the smallest one is the size of the half-wavelength and results from interferences between
propagative waves, whereas the largest one accounts for dissipative phenomena and global energy transfers on
a large scale compared to the wavelength. The smaller the damping, the larger the size of global energy
transfers.
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Fig. 6. Energy quantities at 3750Hz: (a) real part of the structural intensities, (b) kinetic energy densities, (c) real part of the strain energy

densities. Solid line: solution obtained from the displacement field; dashed line: solution obtained from the averaged quadratic method.
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Performing space averages along a half-wavelength removes small-scale components of quadratic variables
and enables the development of an energetic formulation as the frequency increases. Besides energetic
boundary conditions for both active and reactive space-averaged structural intensities have been obtained
from the displacement formulation for passive and active junctions described with impedances. Such
characteristics make the present space-averaged quadratic formulation appropriate for modelling global
energy transfers along one-dimensional dissipative structures in a middle frequency range. Performing space
averages leads to a simplification of quadratic fields, so much so that this method requires less elements than
solving the wave equation with FEM. Besides, the space average interval is well defined as the half-
wavelength, which leads to a more space-detailed quadratic response than space averages on subsystems in
SEA give, provided that the modal overlap is high enough for SEA to be used. Description of junctions with
impedances is not only the clear difference between this work and previous ones but it also enables to access
the frequency response of the input impedance.
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Fig. 7. Input impedance Za: (a) modulus jZaj; (b) angle argðZaÞ.

−10 −8 −6 −4 −2 0 2 3 4 6 8 10

−15

−10

−5

0

5
x 10−8

x (m)

R
e 

(I)
, R

e 
(<

I>
) (

W
 m

−2
)

Re (I)
Re (<I>)

medium
1

medium
2

Fig. 8. Real part of the structural intensities. Solid line: solution obtained from the displacement field; dashed line: solution obtained from

the averaged quadratic method.

C. Devaux et al. / Journal of Sound and Vibration 314 (2008) 821–836834
Appendix A. Formula for computing impedances

Between x ¼ L and x ¼ x0, the displacement u is

uðxÞ ¼ A1e
jkðx�x0Þ þ A2e

�jkðx�x0Þ, (41)
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where A1 and A2 are constants. If z is the specific impedance at x ¼ L, the mixed boundary condition for the
displacement at x ¼ L is the impedance condition u;nðLÞ þ jkzuðLÞ ¼ 0 which is

�ðA1e
jkðL�x0Þ � A2e

�jkðL�x0ÞÞ ¼ �zðA1e
jkðL�x0Þ þ A2e

�jkðL�x0ÞÞ, (42)

where the parameter � ¼ �1 is defined by

q
qn
¼ �

q
qx

. (43)

From Eq. (41) the displacement u and its spatial derivative u;x at x ¼ x0 are

uðx0Þ ¼ A1 þ A2;

u;xðx0Þ ¼ jkðA1 � A2Þ:

(
(44)

From Eq. (44) coefficients A1 and A2 can be written as functions of uðx0Þ:

A1 ¼
ð�� zÞuðx0Þe

�jkðL�x0Þ

�ðejkðL�x0Þ þ e�jkðL�x0ÞÞ þ zðejkðL�x0Þ � e�jkðL�x0ÞÞ
, (45)

A2 ¼
ð�þ zÞuðx0Þe

jkðL�x0Þ

�ðejkðL�x0Þ þ e�jkðL�x0ÞÞ þ zðejkðL�x0Þ � e�jkðL�x0ÞÞ
. (46)

Eqs. (45) and 46 give the impedance Zx0
linking uðx0Þ and u;xðx0Þ as

joZx0
uðx0Þ ¼ �ðlþ 2mÞu;xðx0Þ. (47)

This impedance Zx0
is

Zx0
¼
�ðlþ 2mÞk

o
A1 � A2

A1 þ A2
, (48)

which can be written as, introducing the wave celerity c:

Zx0
¼ �rc

ð�� zÞe�jkðL�x0Þ � ð�þ zÞejkðL�x0Þ

ð�� zÞe�jkðL�x0Þ þ ð�þ zÞejkðL�x0Þ
. (49)
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